1st | Top things named after Glenn T. Seaborg |
Wikipedia article: |
Map showing all locations mentioned on Wikipedia article: |
Distribution within the Solar System![]() The vast majority of known asteroids orbit within the main asteroid belt between the orbits of Mars and Jupiter, generally in relatively low-eccentricity (i.e., not very elongated) orbits. This belt is currently estimated to contain between 1.1 and 1.9 million asteroids larger than in diameter, and millions of smaller ones. It is thought that these asteroids are remnants of the protoplanetary disk, and in this region the accretion of planetesimals into planets during the formative period of the solar system was prevented by large gravitational perturbations by Jupiter. Although fewer Trojan asteroids sharing Jupiter's orbit are currently known, it is thought that there are as many as there are asteroids in the main belt. The dwarf planet Ceres is the largest object in the asteroid belt, with a diameter of over . The next largest are the asteroids 2 Pallas and 4 Vesta, both with diameters of over . Normally Vesta is the only main belt asteroid that can, on occasion, become visible to the naked eye. However, on some very rare occasions, a near-Earth asteroid may briefly become visible without technical aid; see 99942 Apophis. ![]() Various classes of asteroid have been discovered outside the main asteroid belt. Near-Earth asteroids have orbits in the vicinity of Earth's orbit. Trojan asteroids are gravitationally locked into synchronisation with Jupiter, either leading or trailing the planet in its orbit. A couple trojans have been found orbiting with Mars. A group of asteroids called Vulcanoids are hypothesised by some to lie very close to the Sun, within the orbit of Mercury, but none has so far been found. ClassificationAsteroids are commonly classified according to two criteria: the characteristics of their orbits, and features of their reflectance spectrum.Orbit groups and familiesMany asteroids have been placed in groups and families based on their orbital characteristics. Apart from the broadest divisions, it is customary to name a group of asteroids after the first member of that group to be discovered. Groups are relatively loose dynamical associations, whereas families are much tighter and result from the catastrophic break-up of a large parent asteroid sometime in the past. Families have only been recognized within the main asteroid belt. They were first recognised by Kiyotsugu Hirayama in 1918 and are often called Hirayama families in his honor.About 30% to 35% of the bodies in the main belt belong to dynamical families each thought to have a common origin in a past collision between asteroids. A family has also been associated with the plutoid dwarf planet . Quasi-satellites and horseshoe objectsSome asteroids have unusual horseshoe orbits that are co-orbital with the Earth or some other planet. Examples are 3753 Cruithne and . The first instance of this type of orbital arrangement was discovered between Saturn's moons Epimetheus and Janus.Sometimes these horseshoe objects temporarily become quasi-satellites for a few decades or a few hundred years, before returning to their prior status. Both Earth and Venus are known to have quasi-satellites. Such objects, if associated with Earth or Venus or even hypothetically Mercury, are a special class of Aten asteroids. However, such objects could be associated with outer planets as well. Spectral classification![]() In 1975, an asteroid taxonomic system based on colour, albedo, and spectral shape was developed by Clark R. Chapman, David Morrison, and Ben Zellner. These properties are thought to correspond to the composition of the asteroid's surface material. The original classification system had three categories: C-type for dark carbonaceous objects (75% of known asteroids), S-type for stony (silicaceous) objects (17% of known asteroids) and U for those that did not fit into either C or S. This classification has since been expanded to include a number of other asteroid types. The number of types continues to grow as more asteroids are studied. The two most widely used taxonomies currently used are the Tholen classification and SMASS classification. The former was proposed in 1984 by David J. Tholen, and was based on data collected from an eight-color asteroid survey performed in the 1980s. This resulted in 14 asteroid categories. In 2002, the Small Main-Belt Asteroid Spectroscopic Survey resulted in a modified version of the Tholen taxonomy with 24 different types. Both systems have three broad categories of C, S, and X asteroids, where X consists of mostly metallic asteroids, such as the M-type. There are also a number of smaller classes. Note that the proportion of known asteroids falling into the various spectral types does not necessarily reflect the proportion of all asteroids that are of that type; some types are easier to detect than others, biasing the totals. Problems with spectral classificationOriginally, spectral designations were based on inferences of an asteroid's composition. However, the correspondence between spectral class and composition is not always very good, and there are a variety of classifications in use. This has led to significant confusion. While asteroids of different spectral classifications are likely to be composed of different materials, there are no assurances that asteroids within the same taxonomic class are composed of similar materials.At present, the spectral classification based on several coarse resolution spectroscopic surveys in the 1990s is still the standard. Scientists have been unable to agree on a better taxonomic system, largely due to the difficulty of obtaining detailed measurements consistently for a large sample of asteroids (e.g. finer resolution spectra, or non-spectral data such as densities would be very useful). Discovery![]() Historical methodsAsteroid discovery methods have dramatically improved over the past two centuries.In the last years of the 18th century, Baron Franz Xaver von Zach organized a group of 24 astronomers to search the sky for the missing planet predicted at about 2.8 AU from the Sun by the Titius-Bode law, partly as a consequence of the discovery, by Sir William Herschel in 1781, of the planet Uranus at the distance predicted by the law. This task required that hand-drawn sky charts be prepared for all stars in the zodiacal band down to an agreed-upon limit of faintness. On subsequent nights, the sky would be charted again and any moving object would, hopefully, be spotted. The expected motion of the missing planet was about 30 seconds of arc per hour, readily discernible by observers. The first asteroid, 1 Ceres, was not discovered by a member of the group, but rather by accident in 1801 by Giuseppe Piazzi, director of the observatory of Palermo ![]() Three other asteroids (2 Pallas, 3 Juno, and 4 Vesta) were discovered over the next few years, with Vesta found in 1807. After eight more years of fruitless searches, most astronomers assumed that there were no more and abandoned any further searches. However, Karl Ludwig Hencke persisted, and began searching for more asteroids in 1830. Fifteen years later, he found 5 Astraea, the first new asteroid in 38 years. He also found 6 Hebe less than two years later. After this, other astronomers joined in the search and at least one new asteroid was discovered every year after that (except the wartime year 1945). Notable asteroid hunters of this early era were J. R. Hind, Annibale de Gasparis, Robert Luther, H. M. S. Goldschmidt, Jean Chacornac, James Ferguson, Norman Robert Pogson, E. W. Tempel, J. C. Watson, C. H. F. Peters, A. Borrelly, J. Palisa, the Henry brothers and Auguste Charlois. In 1891, however, Max Wolf pioneered the use of astrophotography to detect asteroids, which appeared as short streaks on long-exposure photographic plates. This dramatically increased the rate of detection compared with previous visual methods: Wolf alone discovered 248 asteroids, beginning with 323 Brucia, whereas only slightly more than 300 had been discovered up to that point. Still, a century later, only a few thousand asteroids were identified, numbered and named. It was known that there were many more, but most astronomers did not bother with them, calling them "vermin of the skies". Manual methods of the 1900s and modern reportingUntil 1998, asteroids were discovered by a four-step process. First, a region of the sky was photographed by a wide-field telescope, or Astrograph. Pairs of photographs were taken, typically one hour apart. Multiple pairs could be taken over a series of days. Second, the two films of the same region were viewed under a stereoscope. Any body in orbit around the Sun would move slightly between the pair of films. Under the stereoscope, the image of the body would appear to float slightly above the background of stars. Third, once a moving body was identified, its location would be measured precisely using a digitizing microscope. The location would be measured relative to known star locations.These first three steps do not constitute asteroid discovery: the observer has only found an apparition, which gets a provisional designation, made up of the year of discovery, a letter representing the half-month of discovery, and finally a letter and a number indicating the discovery's sequential number (example: ). The final step of discovery is to send the locations and time of observations to the Minor Planet Center, where computer programs determine whether an apparition ties together previous apparitions into a single orbit. If so, the object receives a catalogue number and the observer of the first apparition with a calculated orbit is declared the discoverer, and granted the honor of naming the object subject to the approval of the International Astronomical Union. Computerized methods[[Image:Asteroid 2004 FH.gif|framed|right|2004 FH is the center dot being followed by the sequence; the object that flashes by during the clip is an artificial satellite.]]There is increasing interest in identifying asteroids whose orbits cross Earth's, and that could, given enough time, collide with Earth (see Earth-crosser asteroids). The three most important groups of near-Earth asteroids are the Apollos, Amors, and Atens. Various asteroid deflection strategies have been proposed, as early as the 1960s.The near-Earth asteroid 433 Eros had been discovered as long ago as 1898, and the 1930s brought a flurry of similar objects. In order of discovery, these were: 1221 Amor, 1862 Apollo, 2101 Adonis, and finally 69230 Hermes, which approached within 0.005 AU of the Earth in 1937. Astronomers began to realize the possibilities of Earth impact. Two events in later decades increased the level of alarm: the increasing acceptance of Walter Alvarez' hypothesis that an impact event resulted in the Cretaceous-Tertiary extinction, and the 1994 observation of Comet Shoemaker-Levy 9 crashing into Jupiter. The U.S. military also declassified the information that its military satellites, built to detect nuclear explosions, had detected hundreds of upper-atmosphere impacts by objects ranging from one to 10 metres across. All of these considerations helped spur the launch of highly efficient automated systems that consist of Charge-Coupled Device (CCD) cameras and computers directly connected to telescopes. Since 1998, a large majority of the asteroids have been discovered by such automated systems. A list of teams using such automated systems includes:
The LINEAR system alone has discovered 97,470 asteroids, as of September 18, 2008. Between all of the automated systems, 4711 near-Earth asteroids have been discovered including over 600 more than in diameter. The rate of discovery peaked in 2000, when 38,679 minor planets were numbered, and has been going down steadily since then (719 minor planets were numbered in 2007). NamingA newly discovered asteroid is given a provisional designation (such as ) consisting of the year of discovery and an alphanumeric code indicating the half-month of discovery and the sequence within that half-month. Once an asteroid's orbit has been confirmed, it is given a number, and later may also be given a name (e.g. 433 Eros). The formal naming convention uses parentheses around the number (e.g. (433) Eros), but dropping the parentheses is quite common. Informally, it is common to drop the number altogether, or to drop it after the first mention when a name is repeated in running text.SymbolsThe first few asteroids discovered were assigned symbols like the ones traditionally used to designate Earth, the Moon, the Sun and planets. The symbols quickly became ungainly, hard to draw and recognize. By the end of 1851 there were 15 known asteroids, each (except one) with its own symbol(s).
Exploration![]() ![]() The first close-up photographs of asteroid-like objects were taken in 1971 when the Mariner 9 probe imaged Phobos and Deimos, the two small moons of Mars, which are probably captured asteroids. These images revealed the irregular, potato-like shapes of most asteroids, as did subsequent images from the Voyager probes of the small moons of the gas giants. The first true asteroid to be photographed in close-up was 951 Gaspra in 1991, followed in 1993 by 243 Ida and its moon Dactyl, all of which were imaged by the Galileo probe en route to Jupiter. The first dedicated asteroid probe was NEAR Shoemaker, which photographed 253 Mathilde in 1997, before entering into orbit around 433 Eros, finally landing on its surface in 2001. Other asteroids briefly visited by spacecraft en route to other destinations include 9969 Braille (by Deep Space 1 in 1999), and 5535 Annefrank (by Stardust in 2002). In September 2005, the Japanese Hayabusa probe started studying 25143 Itokawa in detail and may return samples of its surface to earth. The Hayabusa mission has been plagued with difficulties, including the failure of two of its three control wheels, rendering it difficult to maintain its orientation to the sun to collect solar energy. Following that, the next asteroid encounters will involve the European Rosetta probe (launched in 2004), which flew by 2867 Šteins in 2008 and will buzz 21 Lutetia in 2010. In September 2007, NASA ![]() It has been suggested that asteroids might be used in the future as a source of materials which may be rare or exhausted on earth (asteroid mining), or materials for constructing space habitats (see Colonization of the asteroids). Materials that are heavy and expensive to launch from earth may someday be mined from asteroids and used for space manufacturing and construction. In fictionAsteroids and asteroid belts are a staple of science fiction stories. Asteroids play several potential roles in science fiction: as places which human beings might colonize; as resources for extracting minerals; as a hazard encountered by spaceships travelling between two other points; and as a threat to life on Earth due to potential impacts.NotesSee also
References
External links
|
Embed code: |
|