The Full Wiki

Caenorhabditis elegans: Map

  
  
  

Wikipedia article:

Map showing all locations mentioned on Wikipedia article:



Caenorhabditis elegans ( ) is a free-living, transparent nematode (roundworm), about 1 mm in length, which lives in temperate soil environments. Research into the molecular and developmental biology of C. elegans was begun in 1974 by Sydney Brenner and it has since been used extensively as a model organism.

Biology

Movement of Wild-type C. elegans
Video recording of the Wild type C. elegans hermaphrodite
C. elegans is unsegmented, vermiform, bilaterally symmetrical, with a cuticle integument, four main epidermal cords and a fluid-filled pseudocoelomate cavity. Members of the species have many of the same organ systems as other animals. In the wild, they feed on bacteria that develop on decaying vegetable matter. C. elegans has two sexes: hermaphrodites and males. Individuals are almost all hermaphrodite, with males comprising just 0.05% of the total population on average. The basic anatomy of C. elegans includes a mouth, pharynx, intestine, gonad, and collagenous cuticle. Males have a single-lobed gonad, vas deferens, and a tail specialized for mating. Hermaphrodites have two ovaries, oviducts, spermatheca, and a single uterus.

C. elegans eggs are laid by the hermaphrodite. After hatching, they pass through four larval stages (L1-L4). When crowded or in the absence of food, C. elegans can enter an alternative third larval stage called the dauer state. Dauer larvae are stress-resistant and do not age. Hermaphrodites produce all their sperm in the L4 stage (150 sperm per gonadal arm) and then switch over to producing oocytes. The sperm are stored in the same area of the gonad as the oocytes until the first oocyte pushes the sperm into the spermatheca (a kind of chamber where the oocytes become fertilized by the sperm). The male can inseminate the hermaphrodite, which will use male sperm preferentially (both types of sperm are stored in the spermatheca). When self-inseminated the wild-type worm will lay approximately 300 eggs. When inseminated by a male, the number of progeny can exceed 1,000. At 20 °C, the laboratory strain of C. elegans has an average life span of approximately 2–3 weeks and a generation time of approximately 4 days.

C. elegans has five pairs of autosomes and one pair of sex chromosomes. Sex in C. elegans is based on an X0 sex-determination system. Hermaphrodite C. elegans have a matched pair of sex chromosomes (XX); the rare males have only one sex chromosome (X0).

Longitudinal section through the hermaphrodite C. elegans.


Ecology

The different Caenorhabditis species occupy various nutrient and bacteria rich environments. They do not form self-sustaining populations in soil, as it lacks enough organic matter. C. elegans can survive on a diet of a variety of kinds of bacteria (not all bacteria, though), but its wild ecology is largely unknown. Most laboratory strains were found in human-altered situations like gardens and compost piles, although on a few occasions C. elegans has also been found outside such situations. Dauer larvae can be transported by invertebrates including millipedes, insects, isopods, and gastropods. When they reach a desirable location they then get off, and at least in the lab they will also feed on the dead host if it dies.

C. elegans is one of the few forms of life not known to have a natural virus.

Laboratory uses

C. elegans is studied as a model organism for a variety of reasons. Strains are cheap to breed and can be frozen. When subsequently thawed they remain viable, allowing long-term storage. Because the complete cell lineage of the species has been determined, C. elegans has proven especially useful for studying cellular differentiation.

From a research perspective, C. elegans has the advantage of being a multicellular eukaryotic organism that is simple enough to be studied in great detail. In addition, it is transparent, facilitating the study of developmental processes in the intact organism. The developmental fate of every single somatic cell (959 in the adult hermaphrodite; 1031 in the adult male) has been mapped out. These patterns of cell lineage are largely invariant between individuals, in contrast to mammals where cell development from the embryo is more largely dependent on cellular cues. In both sexes, a large number of additional cells (131 in the hermaphrodite, most of which would otherwise become neurons), are eliminated by programmed cell death (apoptosis).

Wild-type C. elegans hermaphrodite stained with the fluorescent dye Texas Red to highlight the nuclei of all cells


In addition, C. elegans is one of the simplest organisms with a nervous system. In the hermaphrodite, this comprises 302 neurons whose pattern of connectivity has been completely mapped out, and shown to be a small-world network. Research has explored the neural mechanisms responsible for several of the more interesting behaviors shown by C. elegans, including chemotaxis, thermotaxis, mechanotransduction, and male mating behavior.

A useful feature of C. elegans is that it is relatively straightforward to disrupt the function of specific genes by RNA interference (RNAi). Silencing the function of a gene in this way can sometimes allow a researcher to infer what the function of that gene may be. The nematode can either be soaked in or injected with a solution of double stranded RNA, the sequence of which is complementary to the sequence of the gene that the researcher wishes to disable. Alternatively, worms can be fed on genetically transformed bacteria which express the double stranded RNA of interest.

C. elegans has also been useful in the study of meiosis. As sperm and egg nuclei move down the length of the gonad, they undergo a temporal progression through meiotic events. This progression means that every nucleus at a given position in the gonad will be at roughly the same step in meiosis, eliminating the difficulties of heterogeneous populations of cells.

The organism has also been identified as a model for nicotine dependence as it has been found to experience the same symptoms humans experience when they quit smoking.

As for most model organisms, there is a dedicated online database for the species that is actively curated by scientists working in this field. The WormBase database attempts to collate all published information on C. elegans and other related nematodes. A reward of $5000 has been advertised on their website, for the finder of a new species of closely related nematode. Such a discovery would broaden research opportunities with the worm.

Genome

C. elegans was the first multicellular organism to have its genome completely sequenced. The sequence was published in 1998, although a number of small gaps were present (the last gap was finished by October 2002). The C. elegans genome sequence is approximately 100 million base pairs long and contains approximately 20,100 protein-coding genes. The number of known RNA genes in the genome has increased greatly due to the 2006 discovery of a new class of 21U-RNA gene , and the genome is now believed to contain more than 16,000 RNA genes (up from as little as 1,300 in 2005). Scientific curators continue to appraise the set of known genes, such that new gene predictions continue to be added and incorrect ones modified or removed.

In 2003, the genome sequence of the related nematode C. briggsae was also determined, allowing researchers to study the comparative genomics of these two organisms. Work is now ongoing to determine the genome sequences of more nematodes from the same genus such as C. remanei, C. japonica and C. brenneri. These newer genome sequences are being determined using the whole genome shotgun technique which means they are likely to be less complete and less accurate than that of C. elegans, which was sequenced using the "hierarchical" or clone-by-clone approach).

The official version of the C. elegans genome sequence continues to change as and when new evidence reveals errors in the original sequencing (DNA sequencing is not an error-free process). Most changes are minor, adding or removing only a few base pairs (bp) of DNA.E.g. the WS169 release of WormBase (December 2006) lists a net gain of 6 bp to the genome sequence. Occasionally more extensive changes are made, e.g. the WS159 release of May 2006 added over 300 bp to the sequence.

Evolution

It has been shown that a small number of conserved protein sequences from sponges are more similar to humans than to C. elegans. This suggests that there has been an accelerated rate of evolution in the C. elegans lineage. The same study found that several phylogenetically ancient genes are not present in C. elegans.

RNA interference

RNA interference (RNAi) has been used extensively in C. elegans because it can be done by simply feeding the worms transgenic bacteria expressing RNA complementary to the gene of interest. This strategy for gene loss of function experiments is the easiest of all animal models, and thus, scientists were able to knock down 86% of the ~20,000 genes in the worm, establishing a functional role for 9% of the genome .

RNAi does not work nearly as well in other species of worm in the Caenorhabditis genus. Although injecting RNA into the body cavity of the animal induces silencing in most species, only C. elegans and a few other distantly related nematodes can uptake RNA from the bacteria it eats for RNAi . This ability has been mapped down to a single gene, sid-2, which when inserted as a transgene in other species allows them to uptake RNA for RNAi the way C. elegans does.

Scientific community

C. elegans hermaphrodite
In 2002, the Nobel Prize in Physiology or Medicine was awarded to Sydney Brenner, H. Robert Horvitz and John Sulston for their work on the genetics of organ development and programmed cell death (PCD) in C. elegans. The 2006 Nobel Prize in Physiology or Medicine was awarded to Andrew Fire and Craig C. Mello, for their discovery of RNA interference in C. elegans. In 2008 Martin Chalfie shared a Nobel Prize in Chemistry for his work on green fluorescent protein (GFP) in C. elegans.

Because all research into C. elegans essentially started with Sydney Brenner in the 1970s, many scientists working in this field share a close connection to Brenner (they either worked as a post-doctoral or post-graduate researcher in Brenner's lab or in the lab of someone who previously worked with Brenner). Because most people who worked in his lab went on to establish their own worm research labs, there is now a fairly well documented 'lineage' of C. elegans scientists. This lineage was recorded in some detail at the 2003 International Worm Meeting and the results were stored in the Wormbase database.

In the media

C. elegans made news when it was discovered that specimens had survived the Space Shuttle Columbia disaster in February 2003. Later, in January 2009, it was announced that live samples of C. elegans from the University of Nottinghammarker will spend two weeks on the International Space Station as part of a project to explore the effects of zero gravity on muscle development and its physiology. The emphasis of the research will be on the genetic basis of muscle atrophy. This has relevance to space travel, but also to individuals who are bed-ridden, geriatric or diabetic.

See also



References

  1. Alberts, B. et al. (2008). Molecular Biology of the Cell, 5th edition. Chapter 22, page 1321.
  2. http://www.wormbase.org/wiki/index.php/WS205
  3. http://www.cell.com/retrieve/pii/S0092867406014681
  4. http://wormbook.org/chapters/www_noncodingRNA/noncodingRNA.html
  5. http://www.nature.com/nature/journal/v421/n6920/full/nature01278.html
  6. http://jbiol.com/content/7/9/34
  7. http://www.pnas.org/content/104/25/10565.long


Publications







Online resources



Nobel lectures

  • Brenner S (2002) Nature's Gift to Science. In. http://nobelprize.org/nobel_prizes/medicine/laureates/2002/brenner-lecture.pdf
  • Horvitz HR (2002) Worms, Life and Death. In. http://nobelprize.org/nobel_prizes/medicine/laureates/2002/horvitz-lecture.pdf
  • Sulston JE (2002) The Cell Lineage and Beyond. In. http://nobelprize.org/nobel_prizes/medicine/laureates/2002/sulston-lecture.pdf


External links




Embed code:






Got something to say? Make a comment.
Your name
Your email address
Message