The Full Wiki

More info on Coralline algae

Coralline algae: Map


Wikipedia article:

Map showing all locations mentioned on Wikipedia article:

Coralline algae are red algae in the Family Corallinaceae of the order Corallinales. They are characterized by a thallus that is hard because of calcareous deposits contained within the cell walls. The colors of these algae are most typically pink, or some other shade of red, but some species can be purple, yellow, blue, white or gray-green.

Unattached specimens (maerl, rhodoliths) may form relatively smooth compact balls to warty or fruticose thalli. Many are typically encrusting and rock-like, found in tropical marine waters all over the world.

Coralline algae plays an important role in the ecology of coral reefs. Sea urchins, parrot fish, limpets (molluscs) and chitons (molluscs) feed on coralline algae.

Spongites yendoi together with the gardening limpet Patella cochlear
close look at almost any intertidal rocky shore or coral reef will reveal an abundance of pink to pinkish-grey patches, splashed as though by a mad painter over rock surfaces. These patches of pink paint are actually living algae: crustose coralline red algae. The red algae belong to the division Rhodophyta, within which the coralline algae form a distinct, exclusively marine order, the Corallinales.

Coralline algae are widespread in all of the world's oceans, where they often cover close to 100% of rocky substrata. Many are epiphytic (grow on other algae or marine angiosperms), or epizoic (grow on animals), and some are even parasitic on other corallines. Despite their ubiquity, the coralline algae are poorly known by ecologists, and even by specialist phycologists (people who study algae). For example, a recent book on the seaweeds of Hawai'i does not include any crustose coralline algae, even though corallines are quite well studied there and dominate many marine areas.

Traditionally, corallines have been divided into two groups, although this division does not constitute a taxonomic grouping:
  • the geniculate (articulated) corallines;
  • the non-geniculate (non-articulated) corallines.
Geniculate corallines are branching, tree-like plants which are attached to the substratum by crustose or calcified, root-like holdfasts. The plants are made flexible by having non-calcified sections (genicula) separating longer calcified sections intergenicula). Nongeniculate corallines range from a few micrometres to several centimetres thick crusts. They are often very slow growing, and may occur on rock, coral skeletons, shells, other algae or seagrasses. Crusts may be thin and leafy to thick and strongly adherent. Some are parasitic or partly endophytic on other corallines. Many coralline crusts produce knobby protuberances ranging from a millimetre to several centimetres high. Some are free-living as rhodoliths (rounded, free-living specimens). There are over 1600 described species of nongeniculate coralline algae.


The corallines are always calcified. They may bear conceptacles; their cells may fuse, and they may exhibit secondary pit connections. They are capable of constructing stromatolites.

Thalli can be divided into three layers: the hypo-, peri- and epi-thallus.


The earliest corallines date from the Ordovician, although modern forms radiated in the Cretaceous. Stem group corallines are reported from the Ediacaran Doushantuo formation. The corallines are thought to have evolved from within the Solenoporaceae.


The first coralline alga recognized as a living organism was probably Corallina in the 1st century AD. In 1837 Rodolfo Amando Philippi recognized that coralline algae were not animals and he proposed the two generic names Lithophyllum and Lithothamnion as Lithothamnium. For many years they were included in the order Cryptonemiales as the family Corallinaceae until in 1986 they were raised to the order Corallinales.

Corallines in community ecology

Many corallines produce chemicals which promote the settlement of the larvae of certain herbivorous invertebrates, particularly abalone. Larval settlement is adaptive for the corallines because the herbivores remove epiphytes which might otherwise smother the crusts and pre-empt available light. Settlement is also important for abalone aquaculture; corallines appear to enhance larval metamorphosis and the survival of larvae through the critical settlement period. It also has significance at the community level; the presence of herbivores associated with corallines can generate patchiness in the survival of young stages of dominant seaweeds. This has been seen this in eastern Canadamarker, and it is suspected the same phenomenon occurs on Indo-Pacific coral reefs, yet nothing is known about the herbivore enhancement role of Indo-Pacific corallines, or whether this phenomenon is important in coral reef communities.

Some corallines slough off a surface layer of epithallial cells, which in a few cases may be an anti-fouling mechanism which serves the same function as enhancing herbivore recruitment. This also affects the community, as many algae recruit on the surface of a sloughing coralline, and are then lost with the surface layer of cells. This can also generate patchiness within the community. The common Indo-Pacific corallines Neogoniolithon fosliei and Sporolithon ptychoides slough epithallial cells in continuous sheets which often lie on the surface of the plants.

Not all sloughing serves an anti-fouling function. Epithallial shedding in most corallines is probably simply a means of getting rid of damaged cells whose metabolic function has become impaired. Morton and his students studied sloughing in the South African intertidal coralline algae, Spongites yendoi, a species which sloughs up to 50% of its thickness twice a year. This deep-layer sloughing, which is energetically costly, does not affect seaweed recruitment when herbivores are removed. The surface of these plants is usually kept clean by herbivores, particularly the pear limpet, Patella cochlear. Sloughing in this case is probably a means of eliminating old reproductive structures and grazer-damaged surface cells, and reducing the likelihood of surface penetration by burrowing organisms.

Some coralline algae develop into thick crusts which provide microhabitat for many invertebrates. For example, off eastern Canadamarker, Morton found that juvenile sea urchins, chitons, and limpets suffer nearly 100% mortality due to fish predation unless they are protected by knobby and under-cut coralline algae. This is probably an important factor affecting the distribution and grazing effects of herbivores within marine communities. Nothing is known about the microhabitat role of Indo-Pacific corallines. However, the most common species in the region, Hydrolithon onkodes, often forms an intimate relationship with the chiton Cryptoplax larvaeformis. The chiton lives in burrows that it makes in H. onkodes plants, and comes out at night to graze on the surface of the coralline. This combination of grazing and burrowing results in a peculiar growth form (called "castles") in H. onkodes in which the coralline produces nearly vertical, irregularly curved lamellae.

Non-geniculate corallines are of particular significance in the ecology of coral reefs, where they provide calcareous material to the structure of the reef, help cement the reef together, and are important sources of primary production. Coralline algae are especially important in reef construction, as they lay down calcium carbonate as calcite. Although they contribute considerable bulk to the calcium carbonate structure of coral reefs, their more important role in most areas of the reef, is in acting as the cement which binds the reef materials into a sturdy structure.

Corallines are particularly important in constructing the algal ridge's reef framework for surf-pounded reefs in both the Atlanticmarker and Indo-Pacific regions. Algal ridges are carbonate frameworks constructed mainly by nongeniculate coralline algae (after Adey 1978). They require high and persistent wave action to form, so develop best on windward reefs with little or no seasonal change in wind direction. Algal ridges are one of the main reef structures that prevent oceanic waves from striking adjacent coastlines, helping to prevent coastal erosion.

Economic importance

Because of their calcified structure, coralline algae have a number of economic uses. The collection of unattached corallines (maërl) for use as soil conditioners dates to the 18th century. This is particularly significant in Britainmarker and Francemarker, where more 300,000 tonnes of Phymatolithon calcareum (Pallas) Adey & McKinnin and Lithothamnion corallioides are dredged annually. Some harvesting of maërl beds that span several thousand kilometres off the coast of Brazilmarker takes place. These beds contain as-yet undetermined species belonging to the genera Lithothamnion and Lithophyllum. Maërl is also used as a food additive for cattle and pigs, as well as in the filtration of acidic drinking water.

The earliest use of corallines in medicine involved the preparation of a vermifuge from ground geniculate corallines of the genera Corallina and Jania. This use stopped towards the end of the 18th century. Medical science now uses corallines in the preparation of dental bone implants. The cell fusions provide the matrix for the regeneration of bone tissue.

Since coralline algae contain calcium carbonate, they fossilize fairly well. They are particularly significant as stratigraphic markers in petroleum geology. Coralline rock also functions as building stones, with the best examples being in Viennamarker, Austriamarker.


As a colorful component of live rock sold in the marine aquarium trade, coralline algae are desired in home aquariums for their aesthetic qualities, and ostensible benefit to the tank ecosystem.

See also


Further references

  • Morton, O. and Chamberlain, Y.M. 1985. Records of some epiphytic coralline algae in the nortth-east of Ireland. Ir. Nat. J. 21: 436 - 440.
  • Morton, O. and Chamberlain, Y.M. 1989. Further records of encrusting coralline algae on the north-east coast of Ireland. Ir. Nat. J. 23: 102 - 106.
  • Suneson, S. 1943. The structure, life-history, and taxonomy of the Swedish Corallinaceae. Lunds Universitets Arsskrift, N.F., Avd.2, 39(9): 1 - 66.
  • Woelkerling, W.J. 1993. Type collections of Corallinales (Rhodophyta) in the Foslie Herbarium (TRH). Gunneria 67 1 - 289.
  • ITIS Report for Corallinaceae

External links

Embed code:

Got something to say? Make a comment.
Your name
Your email address