The Full Wiki

Solar eclipse: Map


Wikipedia article:

Map showing all locations mentioned on Wikipedia article:

Geometry of a Total Solar Eclipse (not to scale).

A solar eclipse occurs when the moon passes between the Sun and the Earth so that the Sun is fully or partially covered. This can only happen during a new moon, when the Sun and Moon are in conjunction as seen from the Earth. At least two and up to five solar eclipses can occur each year on Earth, with between zero and two of them being total eclipses. Total solar eclipses are nevertheless rare at any location because during each eclipse totality exists only along a narrow corridor in the relatively tiny area of the Moon's umbra.

A total solar eclipse is a spectacular natural phenomenon and many people travel to remote locations to observe one. The 1999 total eclipse in Europe helped to increase public awareness of the phenomenon, as illustrated by the number of journeys made specifically to witness the 2005 annular eclipsemarker and the 2006 total eclipse. The recent solar eclipse of January 26, 2009, was an annular eclipse (see below), while the solar eclipse of July 22, 2009marker was a total solar eclipse.

In ancient times, and in some cultures today, solar eclipses have been attributed to supernatural causes. Total solar eclipses can be frightening for people who are unaware of their astronomical explanation, as the Sun seems to disappear in the middle of the day and the sky darkens in a matter of minutes.


Annular eclipse.
There are four types of solar eclipses:
  • A total eclipse occurs when the Sun is completely obscured by the Moon. The intensely bright disk of the Sun is replaced by the dark silhouette of the Moon, and the much fainter corona is visible. During any one eclipse, totality is visible only from at most a narrow track on the surface of the Earth.
  • An annular eclipse occurs when the Sun and Moon are exactly in line, but the apparent size of the Moon is smaller than that of the Sun. Hence the Sun appears as a very bright ring, or annulus, surrounding the outline of the Moon.
  • A hybrid eclipse (also called annular/total eclipse) transitions between a total and annular eclipse. At some points on the surface of the Earth it is visible as a total eclipse, whereas at others it is annular. Hybrid eclipses are comparatively rare.
  • A partial eclipse occurs when the Sun and Moon are not exactly in line and the Moon only partially obscures the Sun. This phenomenon can usually be seen from a large part of the Earth outside of the track of an annular or total eclipse. However, some eclipses can only be seen as a partial eclipse, because the umbra never intersects the Earth's surface, passing above or below the Earth's polar regions.

The Sun's distance from the Earth is about 390 times the Moon's distance, and the Sun's diameter is about 400 times the Moon's diameter. Because these ratios are approximately the same, the Sun and the Moon as seen from Earth appear to be approximately the same size: about 0.5 degree of arc in angular measure.

The Moon's orbit around the Earth is an ellipse, as is the Earth's orbit around the Sun; the apparent sizes of the Sun and Moon therefore vary. The magnitude of an eclipse is the ratio of the apparent size of the Moon to the apparent size of the Sun during an eclipse. An eclipse when the Moon is near its closest distance from the Earth (i.e., near its perigee) can be a total eclipse because the Moon will appear to be large enough to cover completely the Sun's bright disk, or photosphere; a total eclipse has a magnitude greater than 1. Conversely, an eclipse when the Moon is near its farthest distance from the Earth (i.e., near its apogee) can only be an annular eclipse because the Moon will appear to be slightly smaller than the Sun; the magnitude of an annular eclipse is less than 1. Slightly more solar eclipses are annular than total because, on average, the Moon lies too far from Earth to cover the Sun completely. A hybrid eclipse occurs when the magnitude of an eclipse transitions during the event from smaller than one to larger than one—or vice versa—so the eclipse appears to be total at some locations on Earth and annular at other locations.

The Earth's orbit around the Sun is also elliptical, so the Earth's distance from the Sun varies throughout the year. This also affects the apparent sizes of the Sun and Moon, but not so much as the Moon's varying distance from the Earth. When the Earth approaches its farthest distance from the Sun (the aphelion) in July, this tends to favor a total eclipse. As the Earth approaches its closest distance from the Sun (the perihelion) in January, this tends to favor an annular eclipse.


Central eclipse is often used as a generic term for a total, annular, or hybrid eclipse. This is, however, not completely correct: the definition of a central eclipse is an eclipse during which the central line of the umbra touches the Earth's surface. It is possible, though extremely rare, that part of the umbra intersects with Earth (thus creating an annular or total eclipse), but not its central line. This is then called a non-central total or annular eclipse. The next non-central solar eclipse will be on April 29, 2014. This will be an annular eclipse. The next non-central total solar eclipse will be on April 9, 2043.

The phases observed during a total eclipse are called:
  • First Contact - when the moon's shadow first becomes visible on the solar disk. Some also name individual phases between First and Second Contact e.g. Pac-Man phase.
  • Second Contact - starting with Baily's Beads {cause by light shining through valleys on the moon's surface} and the Diamond Ring. Almost the entire disk is covered.
  • Totality - with the shadow of the moon obscuring the entire disk of the sun and only the corona visible
  • Third Contact - when the first bright light becomes visible and the shadow is moving away from the sun. Again a Diamond Ring may be observed



Diagram of solar eclipse (not to scale).

The diagram to the right shows the alignment of the Sun, Moon and Earth during a solar eclipse. The dark gray region below the Moon is the umbra, where the Sun is completely obscured by the Moon. The small area where the umbra touches the Earth's surface is where a total eclipse can be seen. The larger light gray area is the penumbra, in which only a partial eclipse can be seen.

The Moon's orbit around the Earth is inclined at an angle of just over 5 degrees to the plane of the Earth's orbit around the Sun (the ecliptic). Because of this, at the time of a new moon, the Moon will usually pass above or below the Sun. A solar eclipse can occur only when the new moon occurs close to one of the points (known as node) where the Moon's orbit crosses the ecliptic.

As noted above, the Moon's orbit is also elliptical. The Moon's distance from the Earth can vary by about 6% from its average value. Therefore, the Moon's apparent size varies with its distance from the Earth, and it is this effect that leads to the difference between total and annular eclipses. The distance of the Earth from the Sun also varies during the year, but this is a smaller effect. On average, the Moon appears to be slightly smaller than the Sun, so the majority (about 60%) of central eclipses are annular. It is only when the Moon is closer to the Earth than average (near its perigee) that a total eclipse occurs.

The Moon orbits the Earth in approximately 27.3 days, relative to a fixed frame of reference. This is known as the sidereal month. However, during one sidereal month, the Earth has revolved part way around the Sun, making the average time between one new moon and the next longer than the sidereal month: it is approximately 29.5 days. This is known as the synodic month, and corresponds to what is commonly called the lunar month.The Moon crosses from south to north of the ecliptic at its ascending node, and vice versa at its descending node. However, the nodes of the Moon's orbit are gradually moving in a retrograde motion, due to the action of the Sun's gravity on the Moon's motion, and they make a complete circuit every 18.6 years. This means that the time between each passage of the Moon through the ascending node is slightly shorter than the sidereal month. This period is called the draconic month.

Finally, the Moon's perigee is moving forwards in its orbit, and makes a complete circuit in about 9 years. The time between one perigee and the next is known as the anomalistic month.

The Moon's orbit intersects with the ecliptic at the two nodes that are 180 degrees apart. Therefore, the new moon occurs close to the nodes at two periods of the year approximately six months apart, and there will always be at least one solar eclipse during these periods. Sometimes the new moon occurs close enough to a node during two consecutive months. This means that in any given year, there will always be at least two solar eclipses, and there can be as many as five. However, some are visible only as partial eclipses, because the umbra passes above Earth's north or south pole, and others are central only in remote regions of the Arctic or Antarctic.


During a central eclipse, the Moon's umbra (or antumbra, in the case of an annular eclipse) moves rapidly from west to east across the Earth. The Earth is also rotating from west to east, but the umbra always moves faster than any given point on the Earth's surface, so it almost always appears to move in a roughly west-east direction across a map of the Earth (there are some rare exceptions to this which can occur during an eclipse of the midnight sun in Arctic or Antarctic regions).

The width of the track of a central eclipse varies according to the relative apparent diameters of the Sun and Moon. In the most favourable circumstances, when a total eclipse occurs very close to perigee, the track can be over 250 km wide and the duration of totality may be over 7 minutes. Outside of the central track, a partial eclipse can usually be seen over a much larger area of the Earth.

Occurrence and cycles

Total solar eclipses are rare events. Although they occur somewhere on Earth every 18 months on average, it has been estimated that they recur at any given place only once every 370 years, on average. The total eclipse only lasts for a few minutes at that location, as the Moon's umbra moves eastward at over 1700 km/h. Totality can never last more than 7 min 31 s, and is usually much shorter: during each millennium there are typically fewer than 10 total solar eclipses exceeding 7 minutes. The last time this happened was June 30, 1973 (7 min 3 sec). Observers aboard a Concorde aircraft were able to stretch totality to about 74 minutes by flying along the path of the Moon's umbra. The next eclipse exceeding seven minutes in duration will not occur until June 25, 2150. The longest total solar eclipse during the 8,000-year period from 3000 BCE to 5000 AD will occur on July 16, 2186, when totality will last 7 min 29 s. For comparison, the longest eclipse of the 21st century occurred on July 22, 2009marker and lasted 6 min 39 sec.

If the date and time of any solar eclipse are known, it is possible to predict other eclipses using eclipse cycles. Two such cycles are the Saros and the Inex. The Saros cycle is probably the best known, and one of the most accurate, eclipse cycles. The Inex cycle is itself a poor cycle, but it is very convenient in the classification of eclipse cycles. After a Saros cycle finishes, a new Saros cycle begins one Inex later, hence its name: in-ex. A Saros cycle lasts 6,585.3 days (a little over 18 years), which means that after this period a practically identical eclipse will occur. The most notable difference will be a shift of 120° in longitude (due to the 0.3 days) and a little in latitude. A Saros series always starts with a partial eclipse near one of Earth's polar regions, then shifts over the globe through a series of annular or total eclipses, and ends at the opposite polar region. A Saros (series) lasts 1226 to 1550 years and 69 to 87 eclipses, with about 40 to 60 central.

Final totality

Spectacular solar eclipses are an extreme rarity within the universe at large. They are seen on Earth because of a fortuitous combination of circumstances. Even on Earth, spectacular eclipses of the type familiar to people today are a temporary (on a geological time scale) phenomenon. Many millions of years in the past, the Moon was too close to the Earth to precisely occult the Sun as it does during eclipses today; and many millions of years in the future, it will be too far away to do so.

Due to tidal acceleration, the orbit of the Moon around the Earth becomes approximately 3.8 cm more distant each year. It is estimated that in 600 million years, the distance from the Earth to the Moon will have increased by 23,500 km, meaning that it will no longer be able to completely cover the Sun's disk. This will be true even when the Moon is at perigee, and the Earth at aphelion.

A complicating factor is that the Sun will increase in size over this timescale. This makes it even more unlikely that the Moon will be able to cause a total eclipse. Therefore the last total solar eclipse on Earth will occur in slightly less than 600 million years.

Historical eclipses

Historical eclipses are a valuable resource for historians, in that they allow a few historical events to be precisely dated, from which other dates and a society's calendar can be deduced. Aryabhata (476–550) concluded the Heliocentric theory in solar eclipse. A solar eclipse of June 15, 763 BCE mentioned in an Assyrian text is important for the Chronology of the Ancient Orient. Also known as the eclipse of Bur Sagalemarker, it is the earliest solar eclipse mentioned in historical sources that has been successfully identified. Perhaps the earliest still-unproven claim is that of archaeologist Bruce Masse; on the basis of several ancient flood myths that mention a total solar eclipse, he links an eclipse that occurred May 10, 2807 BCE with a possible meteor impact in the Indian Oceanmarker. There have been other claims to date earlier eclipses, notably that of Mursili II (likely 1312 BCE), in Babylonia, and also in China, during the 5th year (2084 BCE) of the regime of Emperor Zhong Kang of Xia dynasty, but these are highly disputed and rely on much supposition.

Herodotus wrote that Thales of Miletus predicted an eclipse which occurred during a war between the Medians and the Lydians. Soldiers on both sides put down their weapons and declared peace as a result of the eclipse. Exactly which eclipse was involved has remained uncertain, although the issue has been studied by hundreds of ancient and modern authorities. One likely candidate took place on May 28, 585 BCE, probably near the Halysmarker river in the middle of modern Turkeymarker.

An annular eclipse of the Sun occurred at Sardismarker on February 17, 478 BCE, while Xerxes was departing for his expedition against Greece, as Herodotus recorded. Hind and Chambers considered this absolute date more than a century ago. Herodotus also reports that another solar eclipse was observed in Spartamarker during the next year, on August 1, 477 BCE. The sky suddenly darkened in the middle of the day, well after the battles of Thermopylaemarker and Salamis, after the departure of Mardonius to Thessaly at the beginning of the spring of (477 BCE) and his second attack on Athensmarker, after the return of Cleombrotus to Spartamarker. The modern conventional dates are different by a year or two, and that these two eclipse records have been ignored so far. The Chronicle of Ireland recorded a solar eclipse on June 29, 512 CE, and a solar eclipse was reported to have taken place during the Battle of Stiklestadmarker in July, 1030.

It has also been attempted to establish the exact date of Good Friday by means of solar eclipses, but this research has not yielded conclusive results. Research has manifested the inability of total solar eclipses to serve as explanations for the recorded Good Friday features of the crucifixion eclipse. (Good Friday is recorded as being at Passover, which is also recorded as being at or near the time of a full moon.)

The ancient Chinese astronomer Shi Shen (fl. 4th century BCE) was aware of the relation of the moon in a solar eclipse, as he provided instructions in his writing to predict them by using the relative positions of the moon and sun. The 'radiating influence' theory for a solar eclipse (i.e., the moon's light was merely light reflected from the sun) was existent in Chinese thought from about the 6th century BCE (in the Zhi Ran of Zhi Ni Zi), and opposed by the Chinese philosopher Wang Chong (27–97 CE), who made clear in his writing that this theory was nothing new. This can be said of Jing Fang's writing in the 1st century BCE, which stated:

The ancient Greeks had known this as well, since it was Parmenides of Elea around 475 BCE who supported the theory of the moon shining because of reflected light, and was accepted in the time of Aristotle as well. The Chinese astronomer and inventor Zhang Heng (78–139 CE) wrote of both solar and lunar eclipses in the publication of Ling Xian in 120 CE, supporting the radiating influence theory that Wang Chong had opposed (Wade-Giles):

The later Chinese scientist and statesman Shen Kuo (1031–1095 CE) also wrote of eclipses, and his reasoning for why the celestial bodies were round and spherical instead of flat (Wade-Giles spelling):

Eclipses have been interpreted as omens, or portents, especially when associated with battles. On 22 January 1879 a British battalion was massacred by Zulu warriors during the Zulu War in South Africa. At 2:29 PM there was a solar eclipse. The conflict was named the Battle of Isandlwanamarker, the Zulu name for the battle translates as "the day of the dead moon".


Looking directly at the photosphere of the Sun (the bright disk of the Sun itself), even for just a few seconds, can cause permanent damage to the retina of the eye, because of the intense visible and invisible radiation that the photosphere emits. This damage can result in permanent impairment of vision, up to and including blindness. The retina has no sensitivity to pain, and the effects of retinal damage may not appear for hours, so there is no warning that injury is occurring.

Under normal conditions, the Sun is so bright that it is difficult to stare at it directly, so there is no tendency to look at it in a way that might damage the eye. However, during an eclipse, with so much of the Sun covered, it is easier and more tempting to stare at it. Unfortunately, looking at the Sun during an eclipse is just as dangerous as looking at it outside an eclipse, except during the brief period of totality, when the Sun's disk is completely covered (totality occurs only during a total eclipse and only very briefly; it does not occur during a partial or annular eclipse). Viewing the Sun's disk through any kind of optical aid (binoculars, a telescope, or even an optical camera viewfinder) is extremely hazardous.

Glancing at the Sun with all or most of its disk visible is unlikely to result in permanent harm, as the pupil will close down and reduce the brightness of the whole scene. If the eclipse is near total, the low average amount of light causes the pupil to open. Unfortunately the remaining parts of the Sun are still just as bright, so they are now brighter on the retina than when looking at a full Sun. As the eye has a small fovea, for detailed viewing, the tendency will be to track the image on to this best part of the retina, causing damage.

Partial and annular eclipses

Eclipse glasses.

Viewing the Sun during partial and annular eclipses (and during total eclipses outside the brief period of totality) requires special eye protection, or indirect viewing methods, if eye damage is to be avoided. The Sun's disk can be viewed using appropriate filtration to block the harmful part of the Sun's radiation. Sunglasses do not make viewing the sun safe. Only properly designed and certified solar filters should ever be used for direct viewing of the Sun's disk. Especially, self-made filters using common objects like a floppy disk removed from its case, a Compact Disc, a black colour slide film, etc. must be avoided despite what may have been said in the media.

The safest way to view the Sun's disk is by indirect projection. This can be done by projecting an image of the disk onto a white piece of paper or card using a pair of binoculars (with one of the lenses covered), a telescope, or another piece of cardboard with a small hole in it (about 1 mm diameter), often called a pinhole camera. The projected image of the Sun can then be safely viewed; this technique can be used to observe sunspots, as well as eclipses. However, care must be taken to ensure that no one looks through the projector (telescope, pinhole, etc.) directly. Viewing the Sun's disk on a video display screen (provided by a video camera or digital camera) is safe, although the camera itself may be damaged by direct exposure to the Sun. The optical viewfinders provided with some video and digital cameras are not safe. Securely mounting #14 welder's glass in front of the lens and viewfinder protects the equipment and makes viewing possible. Professional workmanship is essential because of the dire consequences any gaps or detaching mountings will have.In the partial eclipse path one will not be able to see the spectacular corona or nearly complete darkening of the sky, yet, depending on how much of the sun's disk is obscured, some darkening may be noticeable. If two-thirds or more of the sun is obscured, then an effect can be observed by which the daylight appears to be dim, as if the sky were overcast, yet objects still cast sharp shadows.


It is safe to observe the total phase of a solar eclipse directly with the unaided eye, binoculars or a telescope, when the Sun's photosphere is completely covered by the Moon. During this period the sun is too dim to be seen through filters. The Sun's faint corona will be visible, and the chromosphere, solar prominences, and possibly even a solar flare may be seen. However, viewing the Sun after totality can be dangerous.

When the shrinking visible part of the photosphere becomes very small, Baily's beads will occur. These are caused by the sunlight still being able to reach Earth through lunar valleys, but no longer where mountains are present. Totality then begins with the diamond ring effect, the last bright flash of sunlight.

At the end of totality, the same effects will occur in reverse order, and on the opposite side of the moon.


Photographing an eclipse is possible with fairly common camera equipment. In order for the disk of the sun/moon to be easily visible, a fairly high magnification telephoto lens is needed (70-200 mm for a 35 mm camera), and for the disk to fill most of the frame, a longer lens is needed (over 500 mm). As with viewing the sun directly, looking at it through the viewfinder of a camera can produce damage to the retina, so care is advised.

Other observations

For astronomers, a total solar eclipse forms a rare opportunity to observe the corona (the outer layer of the Sun's atmosphere). Normally this is not visible because the photosphere is much brighter than the corona. According to the point reached in the solar cycle, the corona can appear small and symmetric, or large and fuzzy. It is very hard to predict this prior to totality.

During a solar eclipse, special (indirect) observations can also be done with the unaided eye only. Normally the spots of light which fall through the small openings between the leaves of a tree, have a circular shape. These are images of the Sun. During a partial eclipse, the light spots will show the partial shape of the Sun, as seen on the picture. Another famous phenomenon is shadow bands (also known as flying shadows), which are similar to shadows on the bottom of a swimming pool. They only occur just prior to and after totality, and are very difficult to observe. Many professional eclipse chasers have never seen them.

During a partial eclipse, a related effect that can be seen is anisotropy in the shadows of objects. Particularly if the partial eclipse is nearly total, the unobscured part of the sun acts as an approximate line source of light. This means that objects cast shadows which have a very narrow penumbra in one direction, but a broad penumbra in the perpendicular direction.

1919 observations

In 1919, the observation of a total solar eclipse helped to confirm Einstein's theory of general relativity. By comparing the apparent distance between two stars, with and without the Sun between them, Arthur Eddington stated that the theoretical predictions about gravitational lenses were confirmed, though it now appears the data were ambiguous at the time. The observation with the Sun between the stars was only possible during totality, since the stars are then visible.

Gravity anomalies

There is a long history about the observations of gravity-related phenomena during solar eclipses, especially around totality. In 1954 and again in 1959, Maurice Allais reported that his observations of the strange/unexplainedmovement during solar eclipses This phenomenon is now called the Allais Effect. Similarly, Saxl and Allen in 1970 observed another event of the sudden change in motion of a torsion pendulum, and this phenomenon is calledthe Saxl effect

A recent published observation during the 1997 solar eclipse by Wang et al. suggested a possible gravitational shielding effect, though there is some serious debate. Later in 2002, Yang and Wang published the detailed data analysis suggested that the phenomenon still remain unexplained. More studies are being planned by NASA and ESA over the next decade.

Before sunrise, after sunset

The phenomenon of atmospheric refraction makes it possible to observe the Sun (and hence a solar eclipse) even when it is slightly below the horizon. It is however possible for a solar eclipse to attain totality (or in the event of a partial eclipse, near-totality) before (visual and actual) sunrise or after sunset from a particular location. When this occurs shortly before the former or after the latter, the sky will appear much darker than it would otherwise be immediately before sunrise or after sunset. On these occasions, an object (especially a planet, often Mercury) may be visible near the sunrise or sunset point of the horizon when it could not have been seen without the eclipse.

Eclipses and transits

In principle, the simultaneous occurrence of a Solar eclipse and a transit of a planet is possible. But these events are extremely rare because of their short durations. The next anticipated simultaneous occurrence of a Solar eclipse and a transit of Mercury will be on July 5, 6757, and a Solar eclipse and a transit of Venus is expected on April 5, 15232.

Only 5 hours after the transit of Venus on June 4, 1769, there was a total solar eclipse, which was visible in Northern America, Europe and Northern Asia as partial solar eclipse. This was the lowest time difference between a transit of a planet and a solar eclipse in the historical past.

More common, but still infrequent, is a conjunction of any planet (not only Mercury or Venus) at the time of a total solar eclipse, in which event the planet will be visible very near the eclipsed Sun, when without the eclipse it would have been lost in the Sun's glare. At one time, some scientists hypothesized that there may be a planet (often given the name Vulcan) even closer to the Sun than Mercury; the only way to confirm its existence would have been to observe it during a total solar eclipse. It is now known that no such planet exists. While there does remain some possibility for small Vulcanoid asteroids to exist, none have ever been found.

Artificial satellites

Artificial satellites can also pass in front of, or transit, the Sun as seen from Earth, but none are large enough to cause an eclipse. At the altitude of the International Space Station, for example, an object would need to be about 3.35 km across to blot the Sun out entirely. These transits are difficult to watch, because the zone of visibility is very small. The satellite passes over the face of the Sun in about a second, typically. As with a transit of a planet, it will not get dark.

Artificial satellites do play an important role in documenting solar eclipses. Images of the umbra on the Earth's surface taken from Mir and the International Space Station are among the most spectacular of all eclipse images. Observations of eclipses from satellites orbiting above the Earth's atmosphere are not subject to weather conditions.

The direct observation of a total solar eclipse from space is rare. The only documented case is Gemini 12 in 1966. The partial phase of the 2006 total eclipse was visible from the International Space Station. At first, it looked as though an orbit correction in the middle of March would bring the ISS in the path of totality, but this correction was postponed.

Meteorological measurements

A special weather station used for meteorological measurements during solar eclipses.

A marked drop of the intensity of the solar radiation occurs during solar eclipse. It influences the actions in the atmosphere. The variations of the atmospheric actions display in changes of standard meteorological and physical quantities. These can be noticed by a measurement of the air temperature and other meteorological quantities (e.g.: air humidity, soil temperature, colour of the solar radiation).

The progressions of the quantities are usually detected by special weather stations because of a short duration of a total (annular) solar eclipse. The properties of the devices usually are: high speed of measurement, high resolution and sensitivity. Acquired results show variations in progressions of meteorological and physical quantities (e.g.: colour of the light).

Recent and up coming solar eclipses

Short term eclipse cycles repeat every 6 lunations (every 177 days), each set lasting 3-4 years. They occur at either the ascending and descending nodes of the moon's orbit. Each set has the moon's shadow crossing the earth near the north or south pole, and subsequent events progress towards the other pole until it misses the earth and the series ends. The saros cycle increments by 5 within each set, and 5 different sets repeat every 18 years, the saros period.






See also

Eclipses elsewhere

Eclipse lists



  1. Five solar eclipses occurred in 1935 ( link).
  2. M. Kidger (1999). The Star of Bethlehem: An Astronomer’s View. Princeton, N. J: Princeton University Press, 68–72.
  3. Needham, Volume 3, 411.
  4. Needham, Volume 3, 411–413.
  5. Photographing the Total Solar Eclipse
  6. Maurice Allais, "Should the Laws of Gravitation be Reconsidered?", Aero/Space Engineering, vol. 9, 46-55 (1959).
  7. Erwin J. Saxl and Mildred Allen, "1970 solar eclipse as 'seen' by a torsion pendulum," Phys. Rev. D., vol.3, 825-825 (1971).
  8. Qian-shen Wang, Xin-she Yang, Chuan-zhen Wu, Hong-gang Guo, Hong-chen Liu, and Chang-chai Hua, "Precise measurement of gravity variations during a total solar eclipse," Phys. Rev. D 62, 041101(R) (2000).
  9. X. S. Yang and Q. S. Wang, "Gravity anomaly during the Mohe total solar eclipse and new constraint on gravitational shielding parameter," Astrophysics and Space Science, vol.282 (1), 245-253 (2002).


  • Needham, Joseph (1986). Science and Civilization in China: Volume 3. Taipei: Caves Books, Ltd.

External links


Eye safety

Embed code:

Got something to say? Make a comment.
Your name
Your email address