The Full Wiki

More info on Tension-leg platform

Tension-leg platform: Map


Wikipedia article:

Map showing all locations mentioned on Wikipedia article:

A Tension-leg platform or Extended Tension Leg Platform (ETLP) is a vertically moored floating structure normally used for the offshore production of oil or gas, and is particularly suited for water depths greater than 300 metres (about 1000 ft) and less than 1500 meters (about 4900 ft). Use of tension-leg platforms has also been proposed for wind turbines.

The platform is permanently moored by means of tethers or tendons grouped at each of the structure's corners. A group of tethers is called a tension leg. A feature of the design of the tethers is that they have relatively high axial stiffness (low elasticity), such that virtually all vertical motion of the platform is eliminated. This allows the platform to have the production wellheads on deck (connected directly to the subsea wells by rigid risers), instead of on the seafloor. This allows a simpler well completion and gives better control over the production from the oil or gas reservoir, and easier access for downhole intervention operations.

TLP's have been in use since the early 1980s. The first Tension Leg Platform was built for Conoco's Hutton fieldmarker in the North Sea in the early 1980s. The hull was built in the dry-dock at Highland Fabricator's Nigg yard in the north of Scotland, with the deck section built nearby at McDermott's yard at Ardersier. The two parts were mated in the Moray Firth in 1984.

Larger TLP's will normally have a full drilling rig on the platform with which to drill and intervene on the wells. The smaller TLPs may have a workover rig, or in a few cases no production wellheads located on the platform at all.

The deepest (E)TLPs measured from the sea floor to the surface are:
  • Magnolia ETLP. Its total height is some .
  • Marco Polo TLP
  • Neptune TLP
  • Kizomba B TLP
  • Kizomba A TLP
  • Ursa TLP. Its height above surface is making a total height of .
  • Allegheny TLP
  • W. Seno A TLP

Use for wind turbines

The Massachusetts Institute of Technologymarker and the National Renewable Energy Laboratory designed the first TLPs for offshore wind turbines in September 2006. Earlier offshore wind turbines cost more to produce, stood on towers dug deep into the ocean floor, were only possible in depths of at most 50 feet, and generated 1.5 megawatts for onshore units and 3.5 megawatts for conventional offshore setups. In contrast, TLP installation was calculated to cost a third as much. TLPs float, and researchers estimate they can operate in depths between 100 and 650 feet and farther away from land, and they can generate 5.0 megawatts.

TLPs cost less to make and install because they are assembled onshore, are towed to their destination, and can be moved. Paul Sclavounos, an MIT professor of mechanical engineering and naval architecture who was involved in the design, said, "You don't pay anything to be buoyant."

Computer simulations project that in a hurricane TLPs would shift three to six feet and the turbine blades would cycle above wave peaks. MIT and NREL researchers say dampers could be used to reduce motion in the event of a natural disaster.

MIT and NREL researchers plan to install a half-scale prototype south of Cape Codmarker. Sclavounos said, "We'd have a little unit sitting out there to show that this thing can float and behave the way we're saying it will."

See also


  2. Alexander's Gas & Oil Connections - Shell's Ursa deep water TLP begins production
  3. Floating Ocean Windmills Designed to Generate More Power

Embed code:

Got something to say? Make a comment.
Your name
Your email address