The Full Wiki

Vehicle armour: Map

Advertisements
  
  

Wikipedia article:

Map showing all locations mentioned on Wikipedia article:

For body armour see armour, for armoured forces see armoured warfare, for other uses see armour .
Military vehicle are commonly armoured to withstand the impact of shrapnel, bullets, missiles, or shell, protecting the personnel inside from enemy fire. Such vehicles include tanks, aircraft, and ships.

Civilian vehicles may also be armoured. These vehicles include cars used by reporters, officials and others in conflict zones or where violent crime is common, and presidential limousines. Armoured car are also routinely used by security firms to carry money or valuables to reduce the risk of highway robbery or the hijacking of the cargo.

Armour may also be used in vehicles from threats other than deliberate attack. Some spacecraft are equipped with specialised armour to protect them against impacts from tiny meteors or fragments of space junk. Helicopters may carry armour in the form of debris containment walls built into the casing of their gas turbines to prevent injuries or airframe damage should the compressor/turbine wheel disintegrate.

The design and purpose of the vehicle determines the amount of armour plating carried, as the plating is often very heavy and excessive amounts of armour restrict mobility. In order to decrease this problem, some new materials (nanomaterials) and material compositions are being researched which include buckypaper, aluminium foam armour plates, ...

Materials

Metals

Steel

Rolled homogeneous armour is strong, hard, and tough (not shatter when struck with a fast, hard blow). Steel with these characteristics is produced by processing cast steel billets of appropriate size and then rolling them into plates of required thickness. Rolling and forging (hammering the steel when it is red hot) irons out the grain structure in the steel, removing imperfections which would reduce the strength of the steel. Rolling also elongates the grain structure in the steel to form long lines, which enable the stress the steel is placed under when loaded to flow throughout the metal, and not be concentrated in one area.

Aluminum

Aluminum is used when light weight is a necessity. It is most commonly used on APC's and armored cars.

Iron

Wrought iron was used on ironclad warships. Early European iron armour consisted of 10 to 13 cm of wrought iron backed by up to one meter of solid wood.

Titanium

Titanium has not seen much use due to its expense. It is however considered to be superior most other metal armor types.

Uranium

Because of its high density, depleted uranium can also be used in tank armor, sandwiched between sheets of steel armor plate. For instance, some late-production M1A1HA and M1A2 Abrams tanks built after 1998 have DU reinforcement as part of the armor plating in the front of the hull and the front of the turret, and there is a program to upgrade the rest (see Chobham armor).

Plastic

Plastic metal, was a type of vehicle armour originally developed for merchant ships by the British Admiralty in 1940. The original composition was described as 50% clean granite of half-inch size, 43% of limestone mineral, and 7% of bitumen. It was typically applied in a layer two inches thick and backed by half an inch of steel.

Plastic armour was highly effective at stopping armour piercing bullets because the hard granite particles would deflect the bullet which would then lodge between plastic armour and the steel backing plate. Plastic armour could be applied by pouring it into a cavity formed by the steel backing plate and a temporary wooden form.

Glass

Ballistic test of a bullet-resistant glass panel
Bulletproof glass is a colloquial term for glass that is particularly resistant to being penetrated when struck by bullets. Since manufacturing glass of usable thicknesses capable of fully stopping most bullets cannot currently be done, the industry generally refers to it as bullet-resistant glass instead.

Bullet-resistant glass is usually constructed using a strong but transparent material such as polycarbonate thermoplastic or by using layers of laminated glass. The desired result is a material with an appearance and light-transmitting behavior of standard glass but offers varying degrees of protection from small arms fire.

The polycarbonate layer, usually consisting of products such as Armormax, Makroclear, Cyrolon, Lexan or Tuffak, is often sandwiched between layers of regular glass. The use of plastic in the laminate provides impact-resistance, such as physical assault with a hammer, an axe, etc. The plastic provides little in the way of bullet-resistance. The glass, which is much harder than plastic, flattens the bullet and thereby prevents penetration. This type of bullet-resistant glass is usually 70–75 mm (2.8–3.0 in) thick.

Bullet-resistant glass constructed of laminated glass layers is built from glass sheets bonded together with polyvinyl butyral, polyurethane or ethylene-vinyl acetate. This type of bullet-resistant glass has been in regular use on combat vehicles since World War II; it is typically about 100–120 mm (3.9–4.7 in) thick and is usually extremely heavy.

Ceramic

Ceramic's precise mechanism for defeating HEAT was uncovered in the 1980s. High speed photography showed that the ceramic material shatters as the HEAT round penetrates, the highly energetic fragments destroying the geometry of the metal jet generated by the hollow charge, greatly diminishing the penetration.

Composite



Composite armour is armour consisting of layers of two or more materials with significantly different chemical properties; steel and ceramics are the most common types of material in composite armour. Composite armour was initially developed in the 1940s, although it did not enter service until much later and the early examples are often ignored in the face of newer armour such as Chobham armour. Composite armour's effectiveness depends on its composition and may be effective against kinetic energy penetrators as well as shaped charge munitions; heavy metals are sometimes included specifically for protection from kinetic energy penetrators.

Ships

Diagram of common elements of warship armor.
The belt armor is denoted by "A".


Belt armor is a layer of armor-plating outside the hull of warships, typically on battleships, battlecruisers, cruisers and some aircraft carriers.

Typically the belt covered from the deck down someway below the waterline of the ship. If built within the hull, rather than forming the outer hull it could be fitted at an inclined angle to improve the protection.

When struck by a shell or torpedo, the belt armor is designed to prevent penetration, by either being too thick for the warhead to penetrate, or sloped to a degree that would deflect the shell or torpedo. Often, the main belt armor was supplemented with a torpedo bulkhead spaced several meters behind the main belt, designed to maintain the ship's watertight integrity even if the main belt were penetrated.

The air-space between the belt and the hull also adds buoyancy. Several wartime vessels had belt armor that was thinner or shallower than was desirable, to speed production and conserve resources.

Aircraft

Armoured Fighting Vehicles

The most heavily armoured vehicles today are the main battle tanks, which are the spearhead of the ground forces, and are designed to withstand anti-tank missiles, kinetic energy penetrators, NBC threats and in some tanks even steep-trajectory shells. The Israelimarker Merkava tanks were designed in a way that each tank component functions as additional back-up armour to protect the crew. Outer armour is modular and enables quick replacement of damaged armour.

Technologies

For efficiency, the heaviest armour on an armoured fighting vehicle (AFV) is placed on its front. Tank tactics require the vehicle to always face the likely direction of enemy fire as much as possible, even in defence or withdrawal operations.

Sloping and curving armour can both increase its protection. Given a fixed thickness of armour plate, a projectile striking at an angle must penetrate more armour than one impacting perpendicularly. An angled surface also increases the chance of deflecting a projectile. This can be seen on v-hull designs, which direct the force of an Improvised explosive device or landmine away from the crew compartment, increasing crew survivability.

Beginning during the Cold War, many AFVs have spall liners inside of the armour, designed to protect crew and equipment inside from fragmentation (spalling) released from the impact of enemy shells, especially high explosive squash head warheads. Spall liners are made of Kevlar, Dyneema or similar materials.

Appliqué armour

Appliqué armour consists of extra plates mounted onto the hull or turret of an AFV. The plates can be made of any material and are designed to be retrofitted to an AFV to withstand weapons which can penetrate the original armour of the vehicle.

Improvised armor

Vehicle armour is sometimes improvised in the midst of an armed conflict by vehicle crews or individual units. In World War II, U.S. tank crews welded spare strips of tank track to the hulls of their Sherman, Lee, and Stuart tanks. In the Vietnam War, U.S. "gun trucks" were armoured with sandbags and locally fabricated steel armour plate. More recently, U.S. troops in Iraq armoured Humvees and various military transport vehicles with scrap materials: this came to be known as "hillbilly armor" or "haji armor" by the Americans.

Spaced armour



Armour with two or more plates spaced a distance apart, called spaced armour or perforated armour, when sloped reduces the penetrating power of bullets and solid shot as after penetrating each plate they tend to tumble, deflect, deform, or disintegrate, when not sloped reduces the protection offered by the armour, and detonates explosive projectiles before they reach the inner plates. It has been in use since the First World War, where it was used on the Schneider CA1 and St Chamond tanks. Many middle and late-World War II German tanks had spaced armour in the form of armoured skirts, to make their thinner side armour more effective against anti-tank fire.



The principle of spaced armour protects against high explosive anti-tank (HEAT) projectiles which create a focused jet of plasticised metal, very effective at the focus point, but much less so beyond there. Relatively thin armour plates or even metal mesh, much lighter than fully protective armour, can be attached as side skirts or turret skirts on tanks and other armoured vehicles. This light armour detonates the warhead prematurely so that the jet of molten metal is focussed well before the main armour, becoming relatively ineffective. Factory-made and improvised stand-off armour was introduced in the Second World War to defend against the new Bazooka, Panzerfaust, and other HEAT weapons.

In response to increasingly effective HEAT warheads, integral spaced armour was reintroduced in the 1960s on the German Leopard 1. There are hollow spaces inside this type of armour, increasing the length of travel from the exterior of the vehicle to the interior for a given weight of armour, to reduce the shaped charge's penetrating power. Sometimes the interior surfaces of these hollow cavities are sloped, presenting angles to the anticipated path of the shaped charge's jet in order to further dissipate its power. For example, a given weight of armour can be distributed in 2 layers 15 cm (6 inch) thick instead of a single 30 cm (12 in) layer, giving much better protection against shaped charges.

Today light armoured vehicles mount panels of metal rods, known as slat armour or cage armour, and some main battle tanks carry rubber skirts to protect their relatively fragile suspension and front belly armour.

The Whipple shield uses the principle of spaced armour to protect spacecraft from the impacts of very fast micrometeoroids. The impact with the first wall melts or breaks up the incoming particle, causing fragments to be spread over a wider area when striking the subsequent walls.

Sloped armour

The Merkava features extreme sloped armour on the turret


Sloped armour is armour that is mounted at a non-vertical and non-horizontal angle, typically on tanks and other armoured fighting vehicles. For a given normal to the surface of the armour, its plate thickness, increasing armour slope improves the armour's level of protection by increasing the thickness measured on a horizontal plane, while for a given area density of the armour the protection can be either increased or reduced by other sloping effects, depending on the armour materials used and the qualities of the projectile hitting it. The increased protection caused by increasing the slope while keeping the plate thickness constant, is due to a proportional increase of area density and thus mass, and thus offers no weight benefit. Therefore the other possible effects of sloping, such as deflection, deforming and ricochet of a projectile, have been the reasons to apply sloped armour in armoured vehicles design. Another motive is the fact that sloping armour is a more efficient way of covering the necessary equipment since it encloses less volume with less material. The sharpest angles are usually seen on the frontal glacis plate, both as it is the hull side most likely to be hit and because there is more room to slope in the longitudinal direction of a vehicle.

Reactive armour



Explosive reactive armour, initially developed by German researcher, Manfred Held working in Israel, uses layers of high explosive sandwiched between steel plates. When a shaped-charge warhead hits, the explosive detonates and pushes the steel plates into the warhead, disrupting the flow of the charge's liquid metal penetrator (usually copper at around 500 degrees Celsius; it can be made to flow like water by sufficient pressure). Traditional "soft" ERA is less effective against kinetic penetrators. "Hard" reactive armour, however, does so much better. The only example currently in widespread service is Russian Kontakt-5. Reactive armour poses a threat to friendly troops near the vehicle.

Non-explosive reactive armour is an advanced spaced armour which uses materials which change their geometry so as to increase protection under the stress of impact.

Active protection systems use a sensor to detect an incoming projectile and explosively launch a counter-projectile into its path.

Cage armour

Cage armour is designed to protect against anti-tank rocket-propelled grenade (RPG) attacks. It functions by placing a rigid barrier around the vehicle which causes the shaped charge warhead, which uses a shaped explosion rather than kinetic energy, to explode at a relatively safe distance. It can be defeated by tandem-charge designs such as the RPG-27 and RPG-29.

Electrically charged armour

Electrically charged armour is a recent development in the United Kingdommarker by the Defence Science and Technology Laboratory. A vehicle is fitted with two thin shells, separated by insulating material. The outer shell holds an enormous electrical charge, while the inner shell is at ground. If an incoming HEAT jet penetrates the outer shell and forms a bridge between the shells, the electrical energy discharges through the jet, disrupting it. Trials have so far been extremely promising, and it is hoped that improved systems could protect against KE penetrators. Developers of the Future Rapid Effect System (FRES) series of armoured vehicles are considering this technology.

See also



References

  1. Containment Device | Transport Armor : Pinnacle Armor - Body Armor and Armoring Products
  2. Buckypaper armour
  3. Lightweight aluminum foam armour plates
  4. those converted from other warships
  5. Winds of Change.NET: In Praise of Senator Biden: Survivable Rides for the Troops
  6. Oxford English Dictionary "appliqué, n. and adj: "Ornamental needlework in which small decorative pieces of fabric are sewn or stuck on to a fabric or garment to form a pattern or trim; the practice of this as a technique or activity; (also) (a piece of) decoration or trim made in this way. Also in extended use in metalwork, and fig". adj. "Of fabric or a garment: decorated by sewing or sticking on small pieces of fabric to form a pattern or trim; (of decoration, trim, etc.) attached in this way".
  7. Gary W. Cooke Combat Vehicle Protection 1 August 2004. cites "FM 3-22.34 TOW Weapon System." and "FM 5-103 Survivability."
  8. US Patent 6962102 - Armour constructions US Patent Issued on November 8, 2005. PatentStorm, Retrieved 2009-02-04
  9. Moran, Michael. "Frantically, the Army tries to armour Humvees: Soft-skinned workhorses turning into death traps," MSNBC, April 15, 2004.
  10. Gardiner, Paul S. "Gun Trucks: Genuine Examples of American Ingenuity," Army Logistician, PB 700-03-4, Vol. 35, No. 4, July-August 2003, Army Combined Arms Support Command, Fort Lee, Virginia. ISSN 0004-2528
  11. Slat Armour for Stryker
  12. BAE’s LROD Cage Armor
  13. U.S. Military Uses the Force (Wired News)
  14. 'Star Trek' shields to protect supertanks (The Guardian)
  15. 'Electric armour' vaporises anti-tank grenades and shells
  16. MoD Develops 'Electric Armour'
  17. New Age Electric Armour - Tough enough to face modern threats
  18. Add-On - Reactive Armor Suits
  19. Advanced Add-on Armor for Light Vehicles


External links




Embed code:
Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message